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1. Introduction

Since the realization that nonzero background fluxes play an essential role for the resolution

of the moduli stabilization problem in string and M- theory [1, 2], there has been an

enormous amount of work on various flux compactifications. For a comprehensive review

see [3]. The low-energy description of these compactifications is given by supergravity

coupled to a certain number of matter and vector multiplets. The scalars belonging to

these multiplets parametrize the moduli space of the four-dimensional effective theory.

Depending on the preserved amount of supersymmetry, the presence of flux leads either to

generation of a superpotential for (some of) the moduli fields or to gauging of some of the

moduli space isometries.

These isometries survive perturbative corrections, but not necessarily non-perturbative

ones. A source of the latter kind of contributions to the moduli space metric in N =

2 compactifications is provided by Euclidean branes.1 Because of charge quantization,

these brane instantons lead to the breaking (to a discrete subgroup) of certain continuous

1These nonperturbative corrections are essential for the stabilization of the Kähler moduli in type IIB

compactifications [4].
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isometries. The latter are the shift symmetries implied by the gauge invariance of the

10d or 11d p-forms that couple to those branes. Since only continuous isometries can

be gauged, there seems to be a potential clash between turning on background fluxes

and taking into account brane-instanton effects. The resolution of this problem for string

theory was addressed in [5]. It was shown there that, in the presence of D0- and D2-brane

instantons, the background fluxes protect exactly the isometries that need to be gauged

thus preserving the consistency of the supergravity description.

We will generalize their argument for the case of five-dimensional heterotic M-theory.

A notable feature of the latter is that, unlike string theory, it does not admit vanishing

background flux and so it always has a gauged isometry. This theory arises from considering

Hořava-Witten on a CY(3) and is of interest for the following reason. The Hořava-Witten

set-up is given by M-theory on an 11d manifold with boundaries or, equivalently, compact-

ification of M-theory on an interval. To get to four dimensions, one further compactifies

on a CY(3). This provides the strong coupling description of the E8 × E8 heterotic string

compactification on the same Calabi-Yau [6] and was argued to improve significantly on

the phenomenological properties of the weakly coupled limit [7]. However, comparing to

phenomenology leads to the conclusion that at some range of high energies the size of the

interval is significantly larger than the size of the Calabi-Yau [8]. There is then an energy

range or equivalently a time interval during the early universe evolution, when the universe

is effectively five-dimensional.2 The implications of this picture for cosmology have been

studied extensively in recent years [9].

The effective action of 5d heterotic M-theory was obtained in [10, 11]. It is given

by five-dimensional N = 2 gauged supergravity coupled to a certain number of vector-

and hypermultiplets. Among them is a hypermultiplet that is the same for every Calabi-

Yau and is hence called universal. The isometry that is gauged due to the presence of

background flux is a symmetry of the universal hypermultiplet moduli space. On the other

hand, one can show that this is precisely the symmetry that gets broken by the presence

of M5-brane instantons wrapping the entire CY(3). (These instantons play a crucial role

for moduli stabilization in 4d heterotic M-theory [12].) The reasoning is in exact parallel

with the considerations of [13], which related 2- and 5-brane instantons to the breaking

of particular isometries of the universal hypermultiplet target space in type IIA string

theory on a CY(3). We will see that the apparent contradiction can be resolved along the

lines of [5]. This leads to certain topological restrictions on the Calabi-Yau three-fold in

order for M5 instantons to be present, but these restrictions can be eased by considering

compactifications with non-standard embedding.

However, one could ask whether the M5 instantons contribute to the metric at all

since a background flux can lift (some of) the fermionic zero modes living on the M5

worldvolume [14 – 16].3 The latter works studied the influence of nonvanishing flux on

the zero mode counting in the context of non-perturbatively generated superpotentials in

N = 1 compactifications. Although it has been known for a while [18] that brane instantons

2At even earlier times (or higher energies) it is eleven-dimensional, whereas at later times (or lower

energies) it becomes four-dimensional.
3This effect was first anticipated in [17].
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can contribute to the superpotential, still many conceptual issues about the computation

of their effects remain open. In the particular case of an M5-brane instanton wrapping

a codimension-two cycle D of the internal space in an M-theory compactification on a

CY(4), it was shown in [19], in the absence of flux, that the instanton gives a nonvanishing

contribution only when the arithmetic genus χ(D,OD) of the cycle is equal to 1. This

condition is required in order to cancel the U(1) anomaly related to rotations in the two

internal dimensions that are normal to the M5 world-volume. In this compactification one

obtains an exact result for the superpotential and this result can be translated into an

exact superpotential for some particular cases in type IIB or heterotic compactifications

via dualities.4 The recent developments regarding zero-mode counting on brane-instanton

world-volumes, that are based on the Dirac equation derived in [21], all address the issue of

how the requirement χ(D,OD) = 1 changes in the presence of background flux. However,

even when the brane-instanton wraps the entire internal space, as is the case with the M5-

instanton in 5d heterotic M-theory, and so there is no U(1) anomaly to be considered, still

the supersymmetries that are broken by the brane-instanton generate fermionic zero modes

in its world-volume theory. Hence studying the Dirac equation on the M5 world-volume

can tell us when the brane-instanton can contribute to the moduli space metric.

As is well-known [7], the supersymmetric backgrounds in heterotic M-theory can have

the following nonvanishing components of the 11d supergravity four-form G: (2, 2, 0),

(2, 1, 1) and (1, 2, 1), where the first two digits are the number of legs along the holo-

morphic and antiholomorphic indices of the Calabi-Yau three-fold respectively and the last

one is along the interval direction. We will see that fluxes of type (2, 2, 0) and (2, 1, 1) do

not affect the zero-mode counting on the M5 world-volume thus leading to four zero modes

as in the fluxless case, whereas flux of type (1, 2, 1) lifts all fermionic zero modes. We

interpret this to mean that M5 instantons are incompatible with (1, 2, 1) flux backgrounds.

For anti-M5 instantons the situation is reversed, i.e. it is the (2, 1, 1) type of flux that lifts

all their zero modes.

Finally, we address the role of the self-dual three-form, living on the M5 brane, for the

zero-mode counting of the world-volume fermions. This field has always been neglected in

the literature because its presence complicates the Dirac equation quite a lot. However,

it is a crucial ingredient in the generalization of the arguments of [5] to our case. So it

is natural to ask how it would affect the above considerations. We do not undertake an

investigation of the most general situation either, but for a particular case we are able to

solve the Dirac equation for the most generic world-volume flux allowed by the M5 field

equations. It turns out, that in this case the world-volume flux does not affect the zero

mode counting.

The present paper is organized as follows. In section 2 we review necessary background

material about 5d heterotic M-theory and its (2, 2, 0)-flux induced gauged isometry. In

section 3 we summarize the results of [13] on the breaking of isometries of the universal

hypermultiplet by 2- and 5-brane instantons and explain how this translates to 5d het-

4The relation with IIB comes via F-theory when the CY(4) is an elliptic fibration over a complex three-

fold X. Then, if X is itself a P
1 fibration over a two-fold Y , one can map to the heterotic string on a T 2

fibration over Y [20].
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erotic M-theory. In section 4 we tackle the reconciliation of M5-brane instantons with the

gauged isometry of heterotic M-theory. In 4.1 we show that the M5 instantons can indeed

contribute to the moduli space metric on the basis of the zero mode counting on their

world-volume. In 4.2 we argue that, similarly to the case considered in [5], the Gauss’s law

on the M5 world-volume forbids exactly the instantons that would have broken the gauged

isometry. The existence of M5 instantons, which do not break this isometry, is related to

a topological restriction on the internal CY(3). In 4.3 we show that this restriction can be

eased in compactifications with non-standard embeddings. In section 5 we consider other

types of background flux and show that the zero mode counting of the M5 world-volume

Dirac equation is not affected by (2, 1, 1) flux, whereas all zero modes are lifted by (1, 2, 1)

flux. In the appendix we show that the roles of these two types of flux are reversed for

anti-M5 brane instantons. Finally, in section 6 we consider in a particular case the Dirac

equation with nonvanishing world volume flux and find that the latter does not change the

zero mode counting.

2. Gauged isometry

The effective five-dimensional theory arising from compactification of Hořava-Witten on

a CY(3) was considered in [11]. It was shown there, that this is gauged supergravity

coupled to h1,1 − 1 vector multiplets and h2,1 + 1 hypermultiplets. The +1 is the universal

hypermultiplet that appears for any CY(3). Its bosonic field content is the following:

the CY volume V , a real scalar σ that is dual to the external components of the 11d

sugra 3-form C and a complex scalar ξ which comes from C = ξΩ + · · · , where Ω is the

holomorphic 3-form of the CY space. The presence of boundaries in eleven dimensions

leads to a modification of the Bianchi identity for the field strength G of C:

dG = − 1

2
√

2π

( κ

4π

)2/3
2

∑

a=1

δ(x11 − x(a))

(

trF (a) ∧ F (a) − 1

2
trR ∧ R

)

, (2.1)

where x(1) = 0 and x(2) = πρ are the positions of the two boundaries. As a result, only

solutions with nonzero background flux are allowed. That is precisely the reason for the

gauging of the effective 5d supergravity. This gauging will be important in the following.

So, in order to explain how it occurs, let us first introduce the relevant notation and

conventions of [11].

Let us start by taking the standard embedding of the spin connection in the first gauge

group:5

trF (1) ∧ F (1) = trR ∧ R . (2.2)

Then (2.1) becomes:

(dG)11ABCD = − 1

4
√

2π

( κ

4π

)2/3
[

δ(x11) − δ(x11 − πρ)
]

(trR ∧ R)ABCD , (2.3)

5The other E8 gauge bundle is taken to be trivial.
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where the indices A,B,C,D run over the six CY directions. Following [11], we introduce

a basis νi, i = 1, . . . , h2,2 = h1,1, of (2, 2)-forms on the CY such that:

1

v2/3

∫

Ci

νj = δj
i ,

1

v

∫

X
ν i ∧ ωj = δ i

j , (2.4)

where Ci is a basis of 4-cycles, ωj − a basis of (1, 1) forms and v is a 6d reference volume.

Now, one can expand the non-exact part of trR ∧ R as:6

trR ∧ R|ne = −8
√

2π

(

4π

κ

)2/3

αiν
i . (2.5)

The numerical coefficient above is chosen for convenience and

αi =
π√
2

( κ

4π

)2/3 1

v2/3
βi , βi = − 1

8π2

∫

Ci

trR ∧ R (2.6)

with βi being integers related to the first Pontrjagin class of the CY. Using (2.5), the

Bianchi identity (2.3) and the field equation, DIG
IJKL = 0 with I = 1, . . . , 11 , can be

solved by the following background flux:

GABCD = αiν
i
ABCDε(x11) ,

GABC11 = 0 , (2.7)

where ε(x11) is the step function defined to be +1 for x11 > 0 and −1 for x11 < 0.

Now we are ready to state the result of [11] about the flux-induced gauging of an

isometry of the universal hypermultiplet moduli space. Let us denote the coordinates on

the latter by qu ≡ (V, σ, ξ, ξ̄)u. Then the kinetic term of the universal hypermultiplet is [11]:

huvDαquDαqv , Dαq = (∂αV, ∂ασ − 2ε(x11)αiAi
α, ∂αξ, ∂αξ̄) , (2.8)

where huv is the metric on the quaternionic space SU(2, 1)/U(2) and Ai
α are h1,1 gauge fields

arising via CαAB = 1
6Ai

αωiAB with the index α running along the five non-CY dimensions7.

Clearly, the isometry σ → σ+const of the metric huv is now gauged because of the nonzero

background flux G = αiν
i ε(x11). The dualization that relates σ and Gαβγδ is accordingly

modified:

G =
1√
2
V −2 ∗5

[

dσ − 2ε(x11)αiAi − i(ξdξ̄ − ξ̄dξ)
]

. (2.9)

Finally, comparing (2.8) with the general expression for the extended derivative, Dαqu =

∂αqu + gAi
αku

i , we see that the Killing vectors ki are:8

ki = −2ε(x11)αi∂σ . (2.10)

Although defining ki as above will be of use for us, we should note that strictly speaking

there is only one Killing vector: k = ∂σ. So, in fact, the gauge field for the gauging is a

linear combination of the graviphoton and the vectors from the vector multiplets, which is

given by Aα = −2ε(x11)αiAi
α.

6In the language of [11] this is denoted as trR∧R|0 and referred to as ‘zero mode part’. Its existence is

exactly what leads to their GABCD |0 6= 0, which in modern terminology is really the background flux.
7The number of vector multiplets is h1,1 − 1 because one of the h1,1 vectors Ai (rather, a certain

combination of them) is the graviphoton of the supergravity multiplet.
8For convenience we set the gauge coupling constant g = 1; or, equivalently, we absorb it in the definition

of αi.
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3. Five-brane instantons

In [13] it was shown that 5-brane and 2-brane instantons lead to the breaking of certain

isometries of the universal hypermultiplet moduli space. The considerations of that paper

were in the context of type IIA compactifications on a CY(3) to a four-dimensional effective

theory with N = 2 supersymmetry. In this case the bosonic content of the universal

hypermultiplet is made up of the dilaton ϕ, a real scalar D that is dual to the external

components of the B-field and a complex scalar C originating from A(3) = CΩ, where

A(3) is the RR 3-form potential. The precise relation between D and H, which is locally

Hµνρ = (dB)µνρ with µ, ν, ρ being four-dimensional indices, is given by

H = e4ϕ ∗4

[

2dD + i(C̄dC − CdC̄)
]

. (3.1)

The manifold parametrized by ϕ,D,C, C̄ is the coset SU(2, 1)/U(2) [22]. In terms of the

complex coordinates S, S̄, C, C̄ , where

S ≡ e−2ϕ + 2iD + CC̄ , (3.2)

this coset has the following symmetries:

S → S + iα + 2(γ + iβ)C + γ2 + β2

C → C + γ − iβ , (3.3)

which correspond to constant shifts of the NS axion D and the RR scalars C, C̄. These

symmetries are invariances of the classical Lagrangian. Their existence is implied by the

gauge transformations9 of the 3-form H and 4-form F(4) = dA(3). As shown in [23],

they survive when sigma-model perturbative corrections are taken into account. They are

also expected to survive in string perturbation theory [24].10 (By contrast, the remaining

symmetries of the coset SU(2, 1)/U(2) are generically broken by perturbative effects.11)

However, non-perturbative corrections due to membrane and five-brane instantons will

break the isometries in (3.3) [13]. Let us recall the argument for this.

It was shown in [13] that the symmetries (3.3) give rise to the Noëther currents

Jα =
i

κ2
4

e2K
(

dS − dS̄ + 2(CdC̄ − 2C̄dC)
)

,

Jβ = − 2i

κ2
4

eK(dC − dC̄) + 2(C + C̄)Jα ,

Jγ = − 2

κ2
4

eK(dC + dC̄) − 2i(C − C̄)Jα , (3.4)

9Recall that gauge invariance implies lack of non-derivative couplings of the corresponding potentials,

which in turn gives rise to exactly the shift symmetries of the scalars obtained from reduction of those

potentials.
10The perturbative corrections to the moduli space of the universal hypermultiplet were first addressed

in [24] and studied more thoroughly in [25, 26].
11For more details on the symmetries of the coset SU(2, 1)/ U(2) see [27].

– 6 –



J
H
E
P
1
0
(
2
0
0
6
)
0
7
1

where K is the Kähler potential K = − ln(S + S̄−2CC̄). Integrating these currents over a

three-cycle Σ3 in the 4d external space, one obtains the corresponding conserved charges:

Qα,β,γ =

∫

Σ3

∗4 Jα,β,γ . (3.5)

However, these charges can be shown to be related to the presence of 5-brane (Qα) and 2-

brane (Qβ, Qγ) instantons. For example for the 5-brane, the case that will be of importance

for us, one can easily see from (3.2) and (3.1) that

Qα =

∫

Σ3

∗4Jα =

∫

Σ3

H , (3.6)

where we also used that K = − ln(S + S̄ − 2CC̄) = 2ϕ. Clearly then, Qα is the five-brane

charge and so charge quantization implies that the presence of 5-brane instantons breaks

the symmetry generated by Jα (i.e. the symmetry S → S + iα) to a discrete subgroup.12

Let us now compare the above type IIA compactification to a 4d N = 2 theory with

the compactification of Hořava-Witten on CY(3), that leads to a five-dimensional effective

theory. In both cases there are eight preserved supercharges. In addition, the scalars

V, σ, ξ, ξ̄, introduced in the previous section, parametrize the same quaternionic manifold,

SU(2, 1)/U(2), as do ϕ,D,C, C̄ . The coordinate transformation between the two sets of

coordinates is:

σ = 2D , V = e−2ϕ , ξ = C . (3.7)

Hence, the same symmetries as (3.3) are also present for the moduli space of the universal

hypermultiplet in the 5d theory. And similarly to the type IIA case this leads, upon

using (2.9), to the shift symmetry σ → σ + α being broken by the presence of five-brane

charge13

Qα =

∫

Σ4

∗5Jα =

∫

Σ4

G , (3.8)

where Σ4 is a four-cycle in the five-dimensional external space.14

However, as we recalled in section 2, the isometry σ → σ + const is gauged because

of the presence of background flux in the CY compactification of Hořava-Witten theory.

Since only continuous isometries can be gauged, it appears therefore that there is a clash

between this gauging and the possible five-brane instanton effects.

4. Flux-induced gauging vs M5 instantons

In the present section we address the reconciliation of the above competing effects. First,

in 4.1 we explain that five-brane instantons can exist in the theory we are considering

and so there is indeed a potential problem. In 4.2 we show that the latter is resolved,

12For further study of 2- and 5-brane instanton effects on the universal hypermultiplet moduli space in

the supergravity description see [28].
13Since D = ImS, clearly the shift S → S + iα is actually D → D + α.
14A similar conclusion was reached in [29] from a different point of view.
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similarly to the string theory case, by requiring that Gauss’ law is obeyed on the brane-

instanton world-volume. This implies that the background flux allows only instantons

that would not break the gauged isometry. If such M5’s are to exist, then the CY has to

satisfy some topological constraints. In 4.3 we show that these constraints can be made

less restrictive by considering compactifications with non-standard embedding due to the

presence of Minkowski M5-branes in the bulk.

4.1 Fermionic zero modes and 5-brane instantons

To claim that there is a possible clash between the gauged isometry, parametrized by the

coordinate σ, and five-brane instantons, let us first convince ourselves that the latter are

not forbidden by supersymmetry. In [30] it was shown that, to first order in the κ2/3

expansion of Hořava-Witten theory, supersymmetry allows only Minkowski membranes

that stretch between the two boundaries and Minkowski five-branes that are parallel to

the boundaries. These are solutions in which the M2 and M5 branes are part of the

background. Nevertheless, it is natural to expect that the same conclusion will hold for their

instantonic counterparts. Indeed, it was shown in [31] that the only M2 instantons, which

are compatible with supersymmetry, are given by membranes wrapping holomorphic curves

on the boundaries and stretching along the eleventh direction. The argument was based

on analyzing what embeddings of the membrane worldvolume into the eleven-dimensional

spacetime allow solutions of Γε = ε, where Γ is the worldvolume operator that defines the κ-

symmetry transformation and ε is the supersymmetry parameter. Clearly, one can perform

an analogous computation for the 5-brane instantons. However, it will be of future use for

us to verify the existence of instantons, due to M5-branes wrapping the whole CY(3), by

counting the fermionic zero-modes on the brane worldvolume.

Recall that the supersymmetries that are broken by the presence of a brane generate

fermionic zero modes on its worldvolume.15 In order for a brane-instanton to be able

to contribute to the moduli space metric of the external theory, the Dirac equation for

its worldvolume fermions has to have four zero modes. Note that, in addition to the

zero modes coming from the broken supercharges, there can also be zero modes related

to internal degrees of freedom (i.e., superpartners of bosonic deformations of the internal

cycle). Furthermore, recently it was shown that background fluxes can change the zero-

mode counting significantly [14, 15].16 These results were based on the Dirac equation for

the M5-worldvolume fermions in a nonvanishing background, derived in [21]. The latter

work considers only the quadratic terms in the fermionic worldvolume action. However,

this is enough for ruling out M5-brane instanton contributions (in the case of less than four

zero modes) since the higher (interaction) terms can only lift zero modes of the quadratic

action but not introduce new ones.17 As we reviewed in section 2, in the case of interest for

15For a nice recent discussion of this point see [16].
16An apparent contradiction in this kind of analysis, related to the consistent inclusion of non-perturbative

effects in the minimization of the 4d effective superpotential, was resolved in [32].
17Recall that, in principle, counting arguments can only be enough for ruling out certain contributions.

However, they do not necessarily imply a non-vanishing correction since even when they do not rule it out,

the explicit computation may end up giving zero.
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us there is nonvanishing background flux. So we are going to show that there are exactly

four zero modes on the worldvolume of an M5 wrapping a CY 3-fold by specializing the

Dirac equation of [21] to our set-up.

Let us start by decomposing the eleven-dimensional spinor in the appropriate way.

To begin with, it transforms in the 32 of SO(1, 10), or in Spin(1, 10) to be more precise.

Compactifying on CY ×M4 ×S1/Z2, the group SO(1, 10) gets broken to SU(3)×SO(1, 3).

After analytic continuation to Euclidean space, the latter group becomes SU(3) × SO(4).

Hence the spinor, θ, on the worldvolume of an M5-brane wrapping the CY(3) transforms

in the (1,4) ⊕ (3,4) ⊕ (3̄,4) ⊕ (1̄,4). Defining the Clifford vacuum |Ω〉 by

γa|Ω〉 = 0 , (4.1)

where the index a runs over the holomorphic coordinates of the CY, one can expand θ as

θ = φ|Ω〉 + φāb̄γ
āb̄|Ω〉 . (4.2)

Recall that this expansion contains only terms with even number of indices because after

κ-symmetry gauge-fixing one is left with a chiral fermion on the worldvolume [21]. Also,

we have suppressed the 4 index on φ, φāb̄ for simplicity.

Let us now turn to the Dirac equation [21]:

γAmAB∇Bθ +
1

24

[

γαβδγA(2δB
A − mA

B)GBαβδ + γαγABC(2δD
A − 3mA

D)GDBCα

]

θ = 0 .

(4.3)

As before, indices α, β, δ run over the five dimensions that are transverse to the CY (and

so to the M5-brane instanton) and A,B,C,D run along the six worldvolume directions.

Also, the matrix m is determined by the worldvolume 3-form flux h via

mA
B = δA

B − 2hACDhBCD . (4.4)

For convenience, from now on we will absorb the 1/24 factor in the definition of the

background flux G. To simplify the problem we will consider in the following, as in all

existing literature, only vanishing worldvolume flux. (We will have more to say about the

h 6= 0 case in section 6.) Hence (4.3) reduces to:

γa∇aθ + γā∇āθ +
(

γαβδγAGAαβδ − γαγABCGABCα

)

θ = 0 . (4.5)

Since the background flux in (2.7) has only GABCD nonzero components, clearly the Dirac

equation (4.5) is completely unaffected by the flux. Hence the counting of zero modes gives

four, which is what is necessary for the M5 instanton to contribute to the metric. Indeed,

substituting (4.2) in (4.5), one finds

∂[āφb̄c̄]γ
āb̄c̄|Ω〉 = 0

(∂āφ + 4gb̄c∂cφb̄ā)γ
ā|Ω〉 = 0 , (4.6)
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where gab̄ is the Kähler metric on the CY. Hence, as in [14], the forms φ and φāb̄ are

harmonic.18 However, as h0,2 = 0 for a CY(3), it follows that φāb̄ = 0. So we are left with

the single component φ, which due to the suppressed index in the 4 of SO(4) means that

there are exactly four zero modes. Therefore, M5-brane instantons are in principle allowed

in the theory under consideration, despite the existence of the flux-induced gauging of the

shift symmetry along σ (which is the isometry they are supposed to break).

4.2 Reconciling M5 instantons with flux-induced isometry gauging

It turns out that the resolution of the above puzzle is along the lines of [5], which considered

D2-brane instantons and flux-induced gauging of isometries in type II strings. The idea is

the following. The correction to the moduli space metric, due to brane-instanton effects,

is of the form TeSinst , where Sinst is the brane action and the prefactor T is made up

of one-loop determinants. Generically T can depend on some of the moduli but not on

the p-form ones, whose shift symmetries are broken by the brane-instanton (in our case,

the coordinate σ), because the dependence on the latter is fixed by the charge of the

instanton.19 In other words, the above p-form moduli enter the brane-instanton induced

correction only via Sinst. Hence, it is enough to show that the change of Sinst, generated

by the Killing vector of the isometry to be gauged, vanishes for brane-instantons that are

compatible with the background flux (i.e., satisfy the appropriate Gauss’ law).

Let us start by recalling the covariant Minkowski M5-brane worldvolume action [33]:

SM5 = −
∫

d6x

(

√

−det(gmn + iH̃mn) −
√−g

4∂qa∂qa
∂laH∗lmnHmnp ∂pa

)

−
∫

(

C(6) +
1

2
F ∧ C(3)

)

, (4.7)

where m,n are worldvolume indices, a(x) is an auxiliary field and

Hlmn = Flmn − C
(3)
lmn , H∗lmn =

1

3!
√−g

εlmnpqrHpqr , H̃mn =
H∗

mnl∂
la

√

(∂a)2
. (4.8)

Finally, F = dA is the field-strength of the 5-brane worldvolume two-form field A. Recall

that F (or, equivalently, H) satisfies a non-linear self-duality condition and there is a non-

linear field redefinition that relates it to a worldvolume 3-form h, which obeys an ordinary

linear self-duality constraint but is not related to a potential.20 Let us also note that the

18Recall that this can be derived in the following way. Acting with ∇ā on the second equation in (4.6), we

obtain that ∆φ = 0. On the other hand, acting with ∇d̄ on the second line of (4.6) and anti-symmetrizing

w.r.t. the pair (ā, d̄) gives, after adding the result of the action of ∇ā on the first line of (4.6), that

∆φb̄c̄ = 0. These manipulations use the fact that on a Kähler manifold the only nonvanishing components

of the Christoffel symbols are Γc
ab and Γc̄

āb̄ and also Rab̄cd̄ = Rad̄cb̄ = Rcb̄ad̄.
19In the case of brane-instanton generated superpotentials (i.e., in N = 1 compactifications), T is a

function of the complex structure moduli but, due to holomorphy, not of the Kähler ones (see [19]). However,

for non-perturbatively generated corrections to the moduli space metric, clearly there is no holomorphy and

so one cannot exclude Kähler moduli dependence of the instanton prefactor.
20More precisely, the relation between the two fields is Hlmn = (δ

r
l −2hlpqh

rpq)(δ
s
m−2hmp′q′h

sp′q′)hnrs [34]

in terms of flat indices, or equivalently Hlmn = (m−1)l
phmnp [35].
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auxiliary field a(x) can be gauged away [33] and in the gauge, in which a(x) is equal to one

of the worldvolume coordinates, the second term on the first line of (4.7) is of the form

∫

(F − C(3)) ∧ (F − C(3)) . (4.9)

Euclidean continuation of the above action is achieved, as usual, by taking the worldvolume

time x0 to ±ix0.

Now, in order to follow the logic of [5] we want to see what is the explicit dependence

of the five-brane action on the scalar σ so that we can compute the change of SM5 under

the transformation generated by the vector field ki (see eq. (2.10)). Since ∗5dC(3) = dσ

with C(3) having only external (which in particular means non-worldvolume) indices, no

terms with C(3) in SM5 contribute σ-dependence.21 On the other hand, the 11d duality

∗11dC(3) = dC(6) descends to C(6) = σw, where w is the CY volume form. Hence

δSM5 = ki(SM5) = ki(

∫

C(6)) = −2ε(x11)αi . (4.10)

So, as long as αi 6= 0, the action is not invariant. However, on the M5 worldvolume, X,

dH = −1
4G [34], where G is the (pullback of the) background flux. Therefore, on X the

flux G has to be cohomologically trivial. From (2.7) this implies that on X

αi = 0 ∀i , (4.11)

which restores the invariance of SM5. So the background flux does not allow five-brane

instantons, unless the CY(3) is such that

∫

Ci

trR ∧ R = 0 (4.12)

for every 4-cycle Ci, in which case the isometry σ → σ + const is not gauged anyway.

Clearly, the conditions (4.12) are satisfied for Calabi-Yau’s with vanishing first Pontrjagin

class.

4.3 Non-standard embedding

In (2.2) we assumed the standard relation between the E8 gauge group of the visible

boundary and the spin connection of the CY space. However, non-standard embeddings

allow other (than E6) unbroken gauge groups on the visible boundary and so have attracted

a lot of phenomenological interest on their own. (They were introduced in the context of

the weakly coupled heterotic string back in [36].) Even richer possibilities for the breaking

of E8 × E8 arise when one considers M5-branes parallel to the boundaries and situated at

various positions along the interval. These five-branes are extending along the four external

directions and wrapping a holomorphic curve in the CY(3). Including them is incompatible

21We use ∗5dC(3) = dσ instead of the full relation (2.9), because we concentrate only on the σ (as opposed

to ξ) dependence and keep only terms linear in κ2/3. (As the Killing vector is proportional to αi ∼ κ2/3, in

ki(SM5) the terms of O(κ2/3) come from the part of SM5 that is zeroth order in κ2/3.)
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with the standard embedding. For an undoubtedly incomplete list of the vast literature on

phenomenology of these compactifications, see [37].

The low-energy effective theory of the strongly coupled heterotic E8 × E8 string on

a CY(3) with non-standard embedding (with or without five-branes) was derived in [38].

Depending on the energy regime of interest it is useful to compactify either to four or to five

dimensions. In the latter case, one again obtains five-dimensional gauged supergravity in

the bulk. The effective theory has the same form as the one for the standard embedding [11],

but the gauging parameters αi are now different from (2.6). For non-standard embedding

without five-branes:22

αi ∼
∫

Ci

(

trF (1) ∧ F (1) − 1

2
trR ∧ R

)

, (4.13)

whereas in the presence of n M5-branes, positioned at x1, . . . , xn along the eleventh di-

mension, the parameters αi change in each interval xk ≤ x11 ≤ xk+1. More precisely, one

finds [38]:

α
(k)
i ∼

k
∑

m=0

β
(k)
i ε(x11) for x11 ∈ (xk, xk+1) , (4.14)

where x0 and xn+1 denote the positions of the visible and hidden boundaries respectively

and the integers β
(k)
i =

∫

Ci
J (k) are topological invariants giving the intersection number

of the k-th five-brane with the four-cycle Ci for k = 1, . . . , n and i = 1, . . . , h2,2.

As in section 2, the isometry of the universal hypermultiplet moduli space that is

gauged is generated by k = ∂σ . So, following the arguments of section 4.2, we again

conclude that five-brane instantons are allowed only when the relevant gauging parameters

α
(k)
i vanish. However, since the Minkowski M5-branes are themselves magnetic sources of

flux, one can achieve the vanishing of α
(k)
i with an appropriate choice of M5-branes in the

bulk without the need to impose (4.12) on the CY(3). Hence, the topological conditions

that the Calabi-Yau should satisfy, so that there can be 5-brane instantons, are least

restrictive for non-standard-embedding vacua with bulk M5-branes.

5. More general background flux

So far we have considered only background flux of type (2, 2, 0), i.e. Gab̄cd̄. As we saw,

it does not affect the Dirac equation of the M5 world-volume fermions. However, in het-

erotic M-theory one could also have supersymmetric backgrounds with nonvanishing flux

components of type (2, 1, 1) and (1, 2, 1), i.e. Gabc̄11 and Gāb̄c11; see, for example, [39].

Such components appear also in a background including the gauge five-brane considered

in [30].23 Let us now see how they modify the zero-mode counting for M5-brane instantons.

22The precise numerical coefficients will not be important for us, so we will omit them for clarity.
23This is the lift to strong coupling of the heterotic string solution of [40].
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In a vacuum with nonzero Gabc̄11 and Gāb̄c11, the Dirac equation on the worldvolume

of an M5 instanton24 (still neglecting the worldvolume flux h) acquires the form:

(

∂[āφb̄c̄] + 4G[āb̄
d̄
|11|φc̄]d̄ + 2Gd̄

d̄ [ā |11|φb̄c̄]

)

γāb̄c̄|Ω〉 = 0
(

∂āφ + 4gb̄c∂cφb̄ā − 8Gā11bcφ
bc + 8Gc11

cb̄φb̄ā + 2Gāc̄
c̄
11φ

)

γā|Ω〉 = 0 , (5.1)

where we have used, as before, the decomposition (4.2). At first sight, equations (5.1) look

quite complicated. However, their analysis can be facilitated by the following observations.

Since they are linear in the flux, one can study the contributions of the (2, 1, 1) and (1, 2, 1)

components separately. Furthermore, on physical grounds turning on background flux can

only reduce the number of zero modes compared to the fluxless case.25 However, the

presence of flux can deform (some of) the surviving zero modes. Let us see what do the

above considerations imply in our case. For vanishing flux the four zero modes (recall that

for convenience we have suppressed the 4 index of φ, φāb̄) were given by φ — harmonic and

φāb̄ = 0. Hence, if it is possible to have φāb̄ 6= 0 for G 6= 0, then the φāb̄ solution must be

completely determined by the solution for φ, together with the flux. Otherwise the number

of zero modes will increase by 3 × 4, which is the number of independent components of

φāb̄.

Now we are ready to start analyzing the system (5.1) in the presence of each of the two

allowed types of flux. Let us begin with (2, 1, 1) fluxes. In this case the equations become:

∂[āφb̄c̄] = 0

∂āφ + 4gb̄c∂cφb̄ā − 8Gā11bcφ
bc + 8Gc11

cb̄φb̄ā = 0 . (5.2)

Acting on the second equation with ∇d̄, together with antisymmetrizing w.r.t. d̄ and ā,

and adding to the result the action of ∇ā on the first equation, we find:26

∆φd̄ā = 8
(

∇[d̄|Gc11
cb̄ + Gc11

cb̄∇[d̄|

)

φb̄|ā] − 8
(

∂[d̄Gā]11
b̄c̄ + G[ā|11

b̄c̄∇|d̄]

)

φb̄c̄ . (5.3)

The system (5.3) consists of three coupled equations for three unknown functions. Any

solutions φāb̄ are determined by the flux only. In other words, the φāb̄ zero modes do not

depend on φ. On the contrary, from the second equation in (5.2) one can determine φ in

terms of the flux and the solutions for φāb̄. Hence, the number of solutions is determined

by φāb̄ and therefore for generic flux it is larger than in the fluxless case. The only way to

reconcile this with the observations in the paragraph below the system (5.1) is to assume

that the solution is in fact φāb̄ = 0, which then implies that φ is harmonic. So the conclusion

is that generic (2, 1, 1) flux does not affect at all the zero modes.

24Not to be confused with the Minkowski gauge five-brane that may be a part of the background.
25The reason is that for nonzero flux there are additional supersymmetry constraints (for example, prim-

itivity conditions for flux components). Satisfying them leads to smaller number of geometric moduli and

hence also to smaller number of their superpartners, which are the fermionic moduli.
26Recall that ∆φāb̄ = 2∆∂̄ φāb̄ = −2∇c̄∇c̄ φāb̄ − 4Rā

c̄
b̄
d̄ φc̄d̄ = −2∇c̄∇c̄ φāb̄, where the last equality is due

to Rab̄cd̄ = Rad̄cb̄ on a Kähler manifold.
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Now let us turn to the (1, 2, 1) type of flux. In this case the system (5.1) reduces to:

∂[āφb̄c̄] + 4G[āb̄
d̄
|11|φc̄]d̄ + 2Gd̄

d̄ [ā |11|φb̄c̄] = 0

∂āφ + 4gb̄c∂cφb̄ā + 2Gāc̄
c̄
11φ = 0 . (5.4)

Acting with ∇ā on the second equation, we find:

∆φ − 4Gāc̄
c̄
11∂

āφ − 4(∂āGāc̄
c̄
11)φ = 0 . (5.5)

The second-order linear differential operator acting on φ in the above equation is clearly

elliptic. Since we are on a compact manifold, its spectrum will be discrete and so nontrivial

solutions for φ will exist only if one of the eigenvalues is zero. This is clearly the case for

vanishing flux, when the operator reduces to the laplacian and hence φ is harmonic. But

for nonzero flux (unless the flux is very particular) the eigenvalue will typically be shifted

away from zero. We conclude that, generically, the only solution of (5.5) is φ = 0. In other

words, generic flux completely lifts the zero modes of the fluxless case.

To recapitulate, turning on generic flux of type (1, 2, 1) lifts all zero modes. Again,

there may be important exceptions for very special choices of flux. On the other hand,

a background flux component of type (2, 1, 1) does not affect the zero mode counting,

similarly to the (2, 2, 0) component. We should note though that the situation is reversed

for anti-M5-brane instantons. Namely, all zero modes on their worldvolume are lifted by

a generic (2, 1, 1) flux, whereas the (1, 2, 1) type of flux does not affect them. For more

details see the appendix.

6. World-volume flux

Until now, our considerations of the Dirac equation on the worldvolume of an M5-brane

instanton always neglected for simplicity (as in all existing literature) the self-dual three-

form h. However, as we saw in section 4.2, h plays an important role in the resolution

of the problem of reconciling five-brane instantons and gauged isometries. Hence, it is

natural to ask how its presence affects the zero-mode counting of the previous sections.

Unfortunately, taking into account both h 6= 0 (or equivalently, Hlmn = (m−1)l
phmnp 6= 0)

and nonvanishing background flux is too complicated to address in full generality. In the

particular case of (2, 2, 0) background though, the Dirac equation simplifies significantly

and we will be able to analyze it in the presence of nonzero worldvolume flux. As a result,

we will see that, whenever the topological constraints of section 4.2 (or the conditions in

section 4.3) are satisfied, the presence of M5-brane instantons is allowed by the zero-mode

counting even with h 6= 0.

6.1 Preliminaries

Since background fluxes of type (2, 2, 0) (as those considered in section 4) do not contribute

to the Dirac equation (4.3), for such backgrounds the latter simplifies to:

γAmAB∇Bθ = 0 , mAB = δAB − 2hA
CDhBCD . (6.1)
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To make further progress we will use the solution for h found in [41] (see also [42]):

h = cΩ + χ . (6.2)

Here Ω is the CY (3, 0)-form, χ is a primitive (1, 2)-form and c is a constant, which for

convenience we will absorb in the definition of Ω from now on. This is the most general form

of the worldvolume flux for an M5 instanton wrapping a CY(3) in the absence of background

flux.27 Nevertheless, it is all we need since effectively the compatibility condition between

the background flux and M5 instantons is that the pullback of the flux on the brane

worldvolume be zero (see section 4.2). Substituting (6.2) in equation (6.1) and using the

decomposition (4.2) of the world-volume fermions, we find:
(

∂āφ + 4gbc̄∂bφc̄ā − 16µc̄b̄∇b̄φc̄ā − 4νā
b∂bφ

)

γā|Ω〉 = 0
(

∂[āφb̄c̄] − 4ν[ā
d∂|d|φb̄c̄]

)

γāb̄c̄|Ω〉 = 0 , (6.3)

where for convenience we have introduced the combinations:28

νā
b = χācd̄χ

bcd̄ , µa
b̄ = Ωacdχ

b̄cd , (6.4)

and used the relation µāb̄ = µb̄ā, whose origin will be recalled shortly. Note that, inverting

the second relation above i.e. using χab̄c̄ = µa
d̄Ω̄d̄b̄c̄, one can write νā

b = µc
d̄Ω̄ād̄ēµg

ēΩ̄gbc.

In order to be able to solve equations (6.3), we will need one more result from [41].

Namely, the (1, 2)-form χ, that determines the world-volume flux via (6.2), has to be of a

very particular form. Let us briefly recall the reasons for that. The self-dual three-form h

is determined by its equation of motion [35]:

mAB∇AhBCD = 0 . (6.5)

The (1, 1) and (0, 2) components of the latter give respectively

∂[aµb]
c̄ − 4cµ[a

d̄∂d̄µb]
c̄ = 0 , (6.6)

which is exactly the Kodaira-Spencer equation [43] that describes finite deformations of

the complex structure of the CY(3), and

∇aχab̄c̄ − 4χādēχ
fdē∇āχfb̄c̄ = 0 , (6.7)

whereas the (2, 0) component vanishes identically due to ∇Ω = 0. In addition, the primi-

tivity condition J ∧ χ = 0 leads to

µab = µba . (6.8)

Equation (6.7) is a deformation of the gauge choice ∂†χ = 0 in which the solution of (6.6)

was found by Tian and Todorov [44]. This solution has the form

χ =
∞
∑

n=1

εnχ(n) , (6.9)

27Nonzero background flux complicates significantly the field equation for h and the generic solution in

that case is not known.
28Our definition of µa

b̄ differs by a factor of 1/2 from the one used in [41].
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with ε being a small parameter, and satisfies (6.8) automatically.29 As the precise form

of the functions χ(n) is not important for us, we will not write them down. It was argued

in [41] that the Tian-Todorov solution can be deformed to a new one, still of the form (6.9),

which satisfies the gauge condition (6.7) together with (6.6) and (6.8).30 In view of this, we

take the worldvolume flux parameters in the Dirac equation (6.3) to also be power series

in ε:

µ =

∞
∑

n=1

εnµ(n) , ν =

∞
∑

n=1

ε2nν(2n) , (6.10)

where the expansion of ν has only even powers because of (6.4). This implies that the

solutions of (6.3) should also be power series:

φ =

∞
∑

n=1

εnφ(n) , φāb̄ =

∞
∑

n=1

εnφ
(n)

āb̄
. (6.11)

6.2 Solving the Dirac equation

Let us now start solving (6.3) order by order in ε. At first order we have the system:

∂āφ
(1) + 4gbc̄∂bφ

(1)
c̄ā = 0

∂[āφ
(1)

b̄c̄]
= 0 , (6.12)

which implies that φ(1) and φ
(1)

āb̄
are harmonic. Using h0,2(CY (3)) = 0, we find that

φ
(1)

āb̄
= 0. Hence, at second order (6.3) gives again:

∂āφ
(2) + 4gbc̄∂bφ

(2)
c̄ā = 0

∂[āφ
(2)

b̄c̄]
= 0 , (6.13)

since the only ε2 term containing µ or ν would have been 16µ(1) c̄b̄∇b̄φ
(1)
c̄ā . Therefore, φ(2)

and φ
(2)

āb̄
are also harmonic and as a result φ

(2)

āb̄
= 0 too.

At order ε3 we find a more complicated system:

∂āφ
(3) + 4gbc̄∂bφ

(3)
c̄ā − 4ν(2)

ā
b∂bφ

(1) = 0

∂[āφ
(3)

b̄c̄]
= 0 , (6.14)

where we have used the vanishing of φ
(1)

āb̄
and φ

(2)

āb̄
. Note that these equations are of

exactly the same form as (3.11) and (3.13) of [14] with 4ν(2)
ā
b∂bφ

(1) playing the role of the

inhomogeneous flux term. However, in our case things are even simpler as we have already

found that φ(1) is harmonic. Since a harmonic function on a compact space is necessarily

constant, ∂bφ
(1) = 0. Therefore, we again find that φ(3), φ

(3)

āb̄
are harmonic and so φ

(3)

āb̄
= 0.

29This solution of the Kodaira-Spencer equation has also been considered in the context of the topological

B-model in [45].
30We should note, that although [41] presents convincing arguments, it does not give a rigorous proof.
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It is easy to generalize the above considerations to any order, but before doing that,

let us gain more familiarity with the equations involved by writing down the systems that

result for two more iterations. At order ε4 (6.3) gives:

∂āφ
(4) + 4gbc̄∂bφ

(4)
c̄ā − 16µ(1) c̄b̄∇b̄φ

(3)
c̄ā − 4ν(2)

ā
b∂bφ

(2) = 0

∂[āφ
(4)

b̄c̄]
= 0 , (6.15)

whereas at order ε5:

∂āφ
(5) + 4gbc̄∂bφ

(5)
c̄ā − 16

2
∑

k=1

µ(k)c̄b̄∇b̄φ
(5−k)
c̄ā − 4

2
∑

k=1

ν(2k)
ā
b∂bφ

(5−2k) = 0

∂[āφ
(5)

b̄c̄]
− 4ν(2)

[ā
d∂|d|φ

(3)

b̄c̄]
= 0 . (6.16)

It is clear now that at order εn one has:

∂āφ
(n) + 4gbc̄∂bφ

(n)
c̄ā = 4T

(n)
ā

∂[āφ
(n)

b̄c̄]
= S

(n)

āb̄c̄
, (6.17)

where for convenience we have introduced the notation

T
(n)
ā = 4

n−3
∑

k=1

µ(k)c̄b̄∇b̄φ
(n−k)
c̄ā +

[n/2]
∑

k=1

ν(2k)
ā
b∂bφ

(n−2k)

S
(n)

āb̄c̄
= 4

[(n−3)/2]
∑

k=1

ν(2k)
[ā

d∂|d|φ
(n−2k)

b̄c̄]
, (6.18)

and the upper limits in the sums take into account that φ
(1)

āb̄
, φ

(2)

āb̄
= 0. Obviously T

(n)
ā

and S
(n)

āb̄c̄
depend only on φ(k) and φ

(k)

āb̄
with k < n, which at the previous stages have been

shown to be harmonic. The latter fact implies that φ
(k)

āb̄
= 0 and ∂bφ

(k) = 0, which leads to

T
(n)
ā = 0 , S

(n)

āb̄c̄
= 0 . (6.19)

Hence φ(n) and φ
(n)

āb̄
are also harmonic.

To recapitulate, the solution of (6.3) is given by φāb̄ = 0 and φ — harmonic. Since

h0,0(CY (3)) = 1, we find a single zero mode. Taking into account the 4 index that we have

suppressed for convenience, this means that there are four zero modes just as in the case

without world-volume flux.

7. Discussion

In this work we considered the interplay between flux-induced gauging of isometries and M5-

brane instantons in five-dimensional heterotic M-theory. We showed that the reconciliation

of the above two competing effects is due to the enforcement of the Gauss’ law on the

instanton worldvolume. It occurs for CY 3-folds that satisfy certain topological constraints.

– 17 –
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We explained that these constraints are significantly eased by considering compactifications

with nonstandard embedding. In addition, we investigated in detail the Dirac equation

for the M5 worldvolume fermions in the presence of all possible types of supersymmetric

background flux. It turned out that backgrounds of type (2, 2, 0) and (2, 1, 1) do not change

the zero-mode counting of the fluxless case, whereas flux of type (1, 2, 1) lifts all zero modes.

(For anti-M5 instantons the roles of the (2, 1, 1) and (1, 2, 1) fluxes are reversed.) We also

managed, for first time, to solve the Dirac equation with nonvanishing worldvolume flux,

although under restricted conditions.

In heterotic M-theory there is always background flux, as we recalled in the intro-

duction. So it was indeed pressing to show the consistency of the gauged supergravity

description when non-perturbative effects are taken into account. However, clearly one can

turn on background flux in M-theory compactifications to five or four dimensions as well.

While the four-dimensional case is important mostly in the context of moduli stabilization,

the five-dimensional one is relevant also for the domain-wall/QFT correspondence [46] and

supersymmetric realizations of the Randall-Sundrum scenario [47]. With the latter moti-

vation in mind, the work [48] studied M-theory compactifications to 5d with background

flux and, in particular, derived the flux-induced gauging in the effective supergravity de-

scription31, similarly to the results of [50] for type II strings. It turns out that again the

isometry of the universal hypermultiplet moduli space, that is given by constant shifts

of the axionic scalar σ, is gauged by the flux.32 Hence the considerations of the present

paper apply, pretty much literally, to this case as well. Finally, it is certainly of interest

to also study, in the same vein as here, the zero mode counting on the worldvolume of

membranes in M-theory flux compactifications to 4d as M2 instantons could contribute to

the superpotential of the low-energy effective theory.
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A. Zero-mode counting for anti-M5 instantons

In the main text we considered M5-branes and, in order to construct an explicit repre-

sentation of the fermion states on their worldvolume, we defined the Clifford vacuum by

γa|Ω〉 = 0. Then the states are obtained by acting on |Ω〉 with the creation operators γā.

To represent the fermion states on an anti-M5-brane worldvolume one can define another

31For more work on solutions in this theory see e.g. [49].
32For classification of all possible (irrespective of background flux) gaugings of the moduli space of the

universal hypermultiplet see [51].
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Clifford vacuum |Ω′〉 by

γā|Ω′〉 = 0 . (A.1)

Now the creation operators are γa and so the decomposition of the worldvolume spinor θ′

is:

θ′ = φ′|Ω′〉 + φ′
abγ

ab|Ω′〉 . (A.2)

This is in accord with the realization of anti-brane worldvolume states in string theory as

complex conjugates of the corresponding brane states. Therefore, it is immediately obvious

that anti-M5 instantons couple to the fluxes of type (2, 1, 1) and (1, 2, 1) in an opposite

way compared to the M5 instantons. Hence it follows from the results of section 5 that the

(2, 1, 1) flux lifts all of their zero-modes, whereas the (1, 2, 1) flux does not affect them.

It is worth noting that, unlike the case of anti-D-branes, for anti-M5-branes there is an

alternative representation of the fermionic states. This is due to the fact that their world-

volume spinor θ′ has definite chirality, which is correlated with the self-duality properties

of the world-volume three-form h. More precisely, θ′ is anti-chiral and so can be built as

an expansion in terms of odd number of creation operators acting on the original vacuum

|Ω〉:
θ′ = φāγ

ā|Ω〉 + φāb̄c̄γ
āb̄c̄|Ω〉. (A.3)

Clearly, if the two representations (A.2) and (A.3) are to describe the same physics, they

have to be equivalent. And indeed they are, since one can write an explicit mapping

between them:

|Ω′〉 = Ω̄āb̄c̄γ
āb̄c̄|Ω〉 and φ′ = Ωāb̄c̄φāb̄c̄ , φ′

ab = Ωab
c̄φc̄ , (A.4)

which is essentially the statement of Serre duality for the Calabi-Yau 3-fold.
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[32] D. Lüst, S. Reffert, W. Schulgin and P.K. Tripathy, Fermion zero modes in the presence of

fluxes and a non-perturbative superpotential, JHEP 08 (2006) 071 [hep-th/0509082].

[33] I.A. Bandos et al., Covariant action for the super-five-brane of M-theory, Phys. Rev. Lett. 78

(1997) 4332 [hep-th/9701149]; On the equivalence of different formulations of the M-theory

five-brane, Phys. Lett. B 408 (1997) 135 [hep-th/9703127].

[34] P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008].

[35] P.S. Howe, E. Sezgin and P.C. West, The six-dimensional self-dual tensor, Phys. Lett. B 400

(1997) 255 [hep-th/9702111].

[36] E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys. B 268 (1986) 79;

L. Witten and E. Witten, Large radius expansion of superstring compactifications, Nucl.

Phys. B 281 (1987) 109.

[37] K. Benakli, Scales and cosmological applications of M-theory, Phys. Lett. B 447 (1999) 51

[hep-th/9805181];

Z. Lalak, S. Pokorski and S. Thomas, Beyond the standard embedding in M-theory on S1/Z2,

Nucl. Phys. B 549 (1999) 63 [hep-ph/9807503];

R. Donagi, A. Lukas, B.A. Ovrut and D. Waldram, Non-perturbative vacua and particle

physics in M-theory, JHEP 05 (1999) 018 [hep-th/9811168];

A. Lukas, B.A. Ovrut and D. Waldram, Five-branes and supersymmetry breaking in

M-theory, JHEP 04 (1999) 009 [hep-th/9901017];

– 21 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB166%2C397
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB166%2C397
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB421%2C139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB421%2C139
http://arxiv.org/abs/hep-th/9706195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C5079
http://arxiv.org/abs/hep-th/0307268
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C066001
http://arxiv.org/abs/hep-th/0402132
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB252%2C221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB252%2C221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB400%2C463
http://arxiv.org/abs/hep-th/9210068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB697%2C48
http://arxiv.org/abs/hep-th/0404147
http://jhep.sissa.it/stdsearch?paper=09%282005%29065
http://arxiv.org/abs/hep-th/0506097
http://jhep.sissa.it/stdsearch?paper=06%282000%29037
http://arxiv.org/abs/hep-th/0005068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB425%2C59
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB425%2C59
http://arxiv.org/abs/hep-th/9709214
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB614%2C117
http://arxiv.org/abs/hep-th/0101049
http://jhep.sissa.it/stdsearch?paper=08%282006%29071
http://arxiv.org/abs/hep-th/0509082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C78%2C4332
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C78%2C4332
http://arxiv.org/abs/hep-th/9701149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB408%2C135
http://arxiv.org/abs/hep-th/9703127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB394%2C62
http://arxiv.org/abs/hep-th/9611008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB400%2C255
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB400%2C255
http://arxiv.org/abs/hep-th/9702111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB268%2C79
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB281%2C109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB281%2C109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB447%2C51
http://arxiv.org/abs/hep-th/9805181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB549%2C63
http://arxiv.org/abs/hep-ph/9807503
http://jhep.sissa.it/stdsearch?paper=05%281999%29018
http://arxiv.org/abs/hep-th/9811168
http://jhep.sissa.it/stdsearch?paper=04%281999%29009
http://arxiv.org/abs/hep-th/9901017


J
H
E
P
1
0
(
2
0
0
6
)
0
7
1

Z. Lalak and S. Thomas, Scales of gaugino condensation and supersymmetry breaking in

nonstandard M-theory embeddings, Nucl. Phys. B 575 (2000) 151 [hep-th/9908147].

[38] A. Lukas, B.A. Ovrut and D. Waldram, Non-standard embedding and five-branes in heterotic

M-theory, Phys. Rev. D 59 (1999) 106005 [hep-th/9808101].

[39] G. Curio and A. Krause, Four-flux and warped heterotic M-theory compactifications, Nucl.

Phys. B 602 (2001) 172 [hep-th/0012152];

L. Anguelova and D. Vaman, R4 corrections to heterotic M-theory, Nucl. Phys. B 733 (2006)

132 [hep-th/0506191].

[40] A. Strominger, Heterotic solitons, Nucl. Phys. B 343 (1990) 167.

[41] M. Marino, R. Minasian, G.W. Moore and A. Strominger, Nonlinear instantons from

supersymmetric p-branes, JHEP 01 (2000) 005 [hep-th/9911206].

[42] L. Bao, M. Cederwall and B.E.W. Nilsson, A note on topological m5-branes and

string-fivebrane duality, hep-th/0603120.

[43] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, I-II, III,

Annals of Math. 67 (1958) 328; Annals of Math 71 (1960) 43.

[44] G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds

and its Petersson-Weil metric, in Mathematical aspects of string theory, S. T. Yau, ed.,

World Scientific, 1987;

A. Todorov, The Weil-Petersson geometry of the moduli space of SU(n ≥ 3) (Calabi-Yau)

manifolds, I, Commun. Math. Phys. 126 (1989) 325.

[45] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and

exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311

[hep-th/9309140].

[46] H.J. Boonstra, K. Skenderis and P.K. Townsend, The domain wall/QFT correspondence,

JHEP 01 (1999) 003 [hep-th/9807137].

[47] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221]; An alternative to compactification, Phys. Rev.

Lett. 83 (1999) 4690 [hep-th/9906064].

[48] K. Behrndt and S. Gukov, Domain walls and superpotentials from M-theory on Calabi-Yau

three-folds, Nucl. Phys. B 580 (2000) 225 [hep-th/0001082].

[49] M. Gutperle and W.A. Sabra, A supersymmetric solution in N = 2 gauged supergravity with

the universal hypermultiplet, Phys. Lett. B 511 (2001) 311 [hep-th/0104044].

[50] J. Louis and A. Micu, Type II theories compactified on Calabi-Yau threefolds in the presence

of background fluxes, Nucl. Phys. B 635 (2002) 395 [hep-th/0202168].
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